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ABSTRACT

Ion focusing by a biased pinhole is studied numerically. Laplace's equation is solved in three dimensions for cylindrical
symmetry on a constant grid to determine the potential field produced by a biased pinhole in a dielectric material.

Focusing factors are studied for ions of uniform incident velocity with a three dimensional Maxwellian distribution

superimposed. Ion currents to the pinhole are found by particle tracking.

The focusing factor of positive ions as a function of initial velocity, temperature, injection radius and hole size is reported.

For a typical Space Station Freedom environment (i.e. oxygen ions having a 4.5 eV ram energy, 0.1 eV temperature and

a -140 V biased pinhole), a focusing factor of 13.35 is found for a 1.5 mm radius pinhole.

INTRODUCTION

Present designs for Space Station Freedom SSF will

result in structure potentials negative from the ambient

plasma by about 150 V. This gives rise to concerns

about sputtering by collection of ambient ions. On a
broad scale this effect will be a contamination concern,

but should not directly damage SSF structure. However

SSF structure is covered by an insulating oxide layer. If

holes develop in the insulation, ions will be focused into

the hole and the local sputtering rate enhanced. At

these pinhole sites sputtering will be aggravated. It is
the enhanced collection of ions at these sites which this

paper discusses.

Considerable effort has already gone into understanding

how electrons are collected from plasma. Experimental

measurements have been performed (ref. 1, 2), and
computational models have been developed (ref. 3-5) to

understand the 'snapover' effect, where electron

collection to pinholes is significantly enhanced at

potentials of a few hundred volts positive. However

since ion collection does not exhibit this effect (due to

the lower secondary electron yields) the simpler problem

has not been investigated as intensively.

Recently, as part of the Space Station Electrical

Grounding Tiger Team effort, Vaughn (ref. 6) has

measured focus factors for ion collection, and Katz et al

(ref. 7) have performed some initial calculations.

The model presented here does not solve Poisson's

equation. Instead it solves Laplace's equation with

computationally convenient boundary conditions. Thus

it represents a simplification of the actual problem.

While the results will not be exact, the model permits

considerable qualitative examination of issues, and

quantitative estimates of sputtering rates.

MODEL

The approach taken in this work is to solve Laplace's

equation for a pinhole geometry, then track ion

trajectories through the potential field. Electric fields

are calculated from this potential field, and the equations

of motion solved to find the trajectories of particles
attracted toward the hole. The collection enhancement

(focusing factor) can be found by finding the radius

where particles no longer hit inside the hole. This

approach does not include space charge effects. An

approximation for the plasma sheath is included by

adjusting the height of the calculation space.

Potential Fields

The potential fields were found by using the Point

Gauss-Siedel method to solve the cylindrical difference

formulation of Laplace's equation in a rectangular grid.

The depth of the hole is not included in the model.

Instead it is considered to be a uniformly biased

conductor. While this may not be reasonable for
modeling debris damage, it is reasonable for modeling

the effect of insulation damage when the insulation

thickness is small compared to the hole radius. The
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insulation is treated as being at the plasma potential,

0 V. This results in a lower boundary having two

potentials. Inside the hole radius the potential is at the

bias potential. Outside, it is zero, referenced to the

plasma potential. The upper boundary is set to the

plasma potential, zero.

The potential contours in figure 1 show that the potential

drops off very rapidly, and the potential contours that
extend large distances are of low magnitude. The

potential at about 1 radius from the center of the hole

drops to 31% of the applied voltage. The potential

varies most rapidly at the edge of the hole. This is the

region of strongest electric field. Near the hole edge, for

a negative potential hole, the electric field flux lines go

up from the surface and down to the hole surface. This

shows up in the trajectories of particles which nearly

miss the hole edge but are forced up and into the

midregion of the hole.

In order to satisfy Dirichlet-Neumann conditions and

completely specify the problem, the inner (r=0) and

outer boundaries must also be specified. The inner

boundary is a center of cylindrical symmetry, so the

radial component of the electric field, Eo must be zero.

The electric field on the outer boundary also approaches

zero as the radius approaches infinity. For these

calculations E r is also set to zero at this boundary.

Unfortunately, the trajectory of particles near the

boundary are very sensitive to the boundary's existence.

Particles near the outer boundary tend to fall straight to

the surface. However, when the boundary is moved

away those particles may have a considerably different

trajectory. For this work the boundary was set far

enough away from the hole that the focusing factor did

not change. The trajectory of particles not hitting the

hole will be incorrect, but that aspect of the problem will
be irrelevant to the results of this calculation.

Electric Field

The electric fields obtained from the potential grid will

be integrated in the equations of motion to yield particle

trajectories. Therefore the interpolated electric field

within each grid region must be consistent with a

relatively continuous potential field. Discontinuities in

the potential field between grid regions can cause the
integrated kinetic energy accumulated by the particle to

disagree with that expected from the potential at a point
and energy will not be conserved. This turns out to be

especially important near the edge of the hole where the

potential changes rapidly in one grid spacing and the

electric field is both large and rapidly varying with

position.

To satisfy this criterion, the electric field is evaluated in

the center of the grid, and using additional interpolated

potential points the gradient of the electric field

components are evaluated as illustrated in figure 2.

Interpolated potential points are evaluated to satisfy

Laplace's difference equation. That is, they are the

average of the four surrounding points. Potentials at the

center of the grid regions, P(r,h) are obtained from the

potential grid, P(j,i). The potential at the center of the

grid edge, P(r,i) can then be interpolated from the two

nearby grid centers and the two nearby grid corners.

The electric field components at the center of the grid
can now be evaluated from the grid edge potentials and
the gradients can be evaluated using the corner

potentials. The electric field can then be interpolated
anywhere in the grid region. The electric fields

calculated in this way are pinned to reproduce the corner
potentials as well as the center of the grid edge. The

resulting potential field is continuous between grid

regions through these points, and constrains the rest of
the edges from being too discontinuous.

This method does not add new information to the known

values at the grid points. Rather it uses the known
values, and interpolates between them in a relatively
continuous manner. The procedure could be reiterated
to generate as continuous a potential field as required.

Particle Tracking

Particle Trajectories are found by integrating the

equation of motion, a = F/m to obtain velocity (v) and

position (r). The electric field, E, is evaluated either for

calculation purposes relative to the center of the grid

region, ro, or, for integration purposes relative to the

position at the beginning of a time step, r(0),

E(r) = E(r(0)) + (r-r(0))sVE.

The acceleration is given by,

a = q/m [E(r(0)) + (r-r(0))*VE}

the velocity is obtained from,

v(T) = v(O) +_T a dt.

The first order expansion of E may be used to replace a.

An integrable estimate of r can be obtained by noting
that,

r(t) ~ r(0) + v(0)t + q/2m E(r(0))t 2,

as long as the term (r(t)-r(0))*VE is small compared to

E(r(0)).

v can be iterated using,

finally,

v(T) = v(0) + q/m E(r(0))T

.}. Of T [V(0)t _ q//2m E(I'(0))t2lo_E dt

v(T) = v(0) + q/m E(r(0))T

+ q/m [v(0)T2/2

+ q/6m E(r(0))T3I*VE
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similarly,

r(T) = r(0) + v(0)T

+ q/2m r(r(0))T_

+ q/6m [v(O)T 3

+ q/4m E(r(0))'I'I*VE

it is possible to take fairly large spatial steps using this

formulation. The main constraint is to prevent the

particle from moving too far into the next grid region

where the extrapolation is not valid. In principle the

particle could cross the grid in one large time step, then
be bumped across the edge in the next step. In practice,

particles were moved about 0.2 grids each time step. An
estimate of the time step size can be made by solving for
T in the quadratic equation,

r(T) - r(0) + v(0)T

+ q/2m E(r(0))T 2,

where r(T) is evaluated to cross the radially symmetric

grid in all six directions and the smallest positive T is

actually used. Particles which pass through the r = 0 line

are reflected by changing the sign of the radial

component of the velocity.

The potential field around the hole has cylindrical

symmetry, so the angular coordinate becomes important

only when visualizing the actual three dimensional

trajectory. However, the angular velocity component

plays a significant role. Angular effects were accounted

for by calculating the motion in three dimensions, then

rotating the coordinate system to find the new r, z, % vz,

v0. This technique was tested by tracking a particle with

no electric field present and ensuring that it followed a

straight line.

Implementation of model

An objective of this effort was to produce a fast

microcomputer model which could be used to investigate

ion collection by pin holes. Figure 3 shows the flow of

the program used.

Solving the potential field takes a significant amount of

time, 10 minutes on an Intel 80387 to solve an 80 X 160
grid, but this need only be done once. The time can be

minimized by using as limited a computational grid as

possible. Solution of the particle trajectories is fast due
to the semi-analytical approach taken. Typically times
steps were scaled to cross 0.2ths of a grid region.

The approximation for r used above to enable

integration of the acceleration begins to break down

when (r(t)-r(0))oVE is not small compared to E(r(0)), as

is the case near the hole edge. However when this

occurs the particle is almost certainly collected, though

the calculated trajectory and impact point may not be

accurate. A calculation space with a radial dimension

twenty times the hole size gives sufficiently accurate
results.

Velocity Distribution

The effect of a Maxwellian velocity distribution can be

addressed by adding incremental velocities to the

incident velocity representative of the three dimensional

velocity distribution. The results for each velocity

element are weighted by the probability of a particle

having an incident velocity near the tested velocity.

To calculate a focus factor for a given temperature, the

three dimensional particle velocity space was broken into

a grid. Division of the velocity space into approximately

3000 (18x18x9) elements yielded a reasonable simulation.

Only half the O velocity is needed due to the symmetry

of the problem. Each grid element was assigned a

velocity vector representative of its position and a weight

of the fraction of particles contained in it. Focus factors

for each velocity grid element were then obtained. The
net focus factor is then the sum of the focus

factor/weight product.

DISCUSSION

Focus Factor

For particles whose initial velocity is normal to the
surface, the focus factor is easy to find. All particles

emitted from the upper boundary inside a certain radius,

ro will be collected. The focus factor, that is the
enhancement in total current collected is the ratio of the

collecting area to the hole area, or (rdrh) 2.

It is interesting that the impact points do not map

monotonically with the incident radius. As shown in

figure 4, both for particles near the center and far from

the edge the further away from the center a particle is

dropped, the further away it hits. But particles which

traverse near the edge can end up almost anywhere.

The following dependencies were investigated for a base

set of conditions simulating RAM impact conditions for

SSF orbits, i.e.: oxygen ions, at normal incidence, with an

initial velocity corresponding to 4.5 eV, and with a

temperature of 0.1 eV.

Energy Dependence

A qualitative argument can be made to describe the

focus factor's dependence on incident energy. In this

model both the upper boundary (plasma sheath edge)

and the lower boundary (surface) have the same

potential. Therefore if the incident particle picks up

more kinetic energy, due to motion directed parallel to

the surface, than its initial incident energy, it will not be

able to reach the lower surface except in the hole. If a

particle is dropped into the grid with zero velocity and
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temperature, except at the outside edge, it will reach the

hole and the focus factor is essentially infinite.

In low earth orbit the focus factors will be smaller than

those which are observed in ground tests since the ram

energy of the incident ions is larger than the thermal

energy of ions used in most ground tests.

Results of the calculated focus factor as a function of

incident velocity are shown in figure 5.

Hole Size and the Plasma Sheath

The calculations presented here scale with two geometric

parameters, the hole size relative to both the width and

height of the calculation space. To obtain meaningful

results the hole size should be smaLl compared to the
total surface area. Therefore the calculation grid should

be wide enough that further expansion of the grid does

not affect the trajectories of those particles which hit or
nearly hit the hole.

On the other hand, the height of the calculation space
indicates a distance above which the electric field is zero.

Therefore it performs a function similar to the plasma

sheath. These results obtained by changing the pinhole

radius as compared to the sheath thickness are displayed

in figure 6.

It is expected that as the hole size becomes large

compared to the sheath the focus factor will approach

unity. But in this case the height of the calculation space
would be identified as the Child-Langrnuir length. As

the hole gets small compared to the height of the

calculation space the focus factor will approach a value

which depends only on incident angle and temperature,

and incident energy. However, in these simulations, as

the hole gets even smaller the focus factor drops off
again. Possibly the particles cannot reach the hole due

to angular momentum constraints.

Temperature

As indicated above, modeling temperature effects

requires finding focus factors for a large number of

initial velocities. Particles with high angles of incidence

may hit the hole from considerable distances away.

Fortunately these represent a small portion of the

velocity space. The effect of temperature is shown in

Figure 7 for two cases. Figure 7a shows a case where

the temperature is small compared to the incident

velocity. Figure 7b shows a case with zero incident

velocity.

Comparison to Experiment

Vaughn (ref. 6) has measured ion currents to a hole. He
measured the current to a 0.54 cm diameter hole biased

at -140 V. The Argon plasma he used had a number

density of 2x10 _2m -3, an electron temperature of

1.2 eV and an ion energy of 2.0 eV. An ion current of
0.5 #A was measured. This suggests a focus factor of 78,
if an ion thermal current is used, to 22, if the ions are

assumed to be flowing. Since there was a 2 V drop from

the plasma source to the tank plasma, we assume the
latter number is the correct value.

The sheath thickness for comparison was estimated by

finding where aEJOh, from an average potential seen as

a function of height, is equal to Q/eo from the plasma

density. A sheath thickness of .018 m was estimated for
the ram case, and .021 m for the thermal case. This

model predicts a focus factor of 18 for the ram velocity
case, and 8.5 for the thermal case. The agreement is

good.

Katz et al (ref.7) have noted that an accurate model

must include a good model of the sheath edge, and also

must model the surface potentials near the hole

accurately. They have noted that the surface near the

hole is shielded from thermal electrons by the hole's
negative potential and tends to charge positive.

CONCLUSION

The simple pinhole ion collection model presented here

permits reasonable estimates of focus factors. The

model uses a solution to Laplace's equation of the

cylindrically symmetric potential field to evaluate electric

fields near the hole, then tracks particles to evaluate the

focus factor. The particles are tracked in three

dimensions, though the angular coordinate can be
ignored. The model permits incident velocities in three
dimensions and can therefore be used to model

temperature effects.

An objective of this work was to provide a fast model pin

hole collection. Focus factors for specific initial

velocities are found quickly but temperature calculations

are time consuming due to the large number of particles
tracked.

The present model assumes a level plasma sheath and a

uniform surface potential. The accuracy of the model

might be improved by including an analytical model of

the sheath shape and the surface potential. We intend

to verify the accuracy of the model further by comparing
its result with I-V curves obtained in the ion coLlection

tests.
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